1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
<html>
<head>
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<meta http-equiv="Content-Language" content="en" />
<title>skalibs: the biguint library interface</title>
<meta name="Description" content="skalibs: the biguint library interface" />
<meta name="Keywords" content="skalibs biguint libbiguint library interface" />
<!-- <link rel="stylesheet" type="text/css" href="//skarnet.org/default.css" /> -->
</head>
<body>
<p>
<a href="../libskarnet.html">libskarnet</a><br />
<a href="../index.html">skalibs</a><br />
<a href="//skarnet.org/software/">Software</a><br />
<a href="//skarnet.org/">www.skarnet.org</a>
</p>
<h1> The <tt>biguint</tt> library interface </h1>
<p>
<tt>biguint</tt> is set of simple primitives performing arithmetical
operations on (unsigned) integers of arbitrary length. It is nowhere
near as powerful or efficient as specialized,
assembly language-optimized libraries such as
<a href="http://gmplib.org/">GMP</a>, but it has the advantages
of smallness and simplicity.
</p>
<h2> Compiling </h2>
<ul>
<li> Use <tt>#include <skalibs/biguint.h></tt> </li>
</ul>
<h2> Programming </h2>
<p>
You should refer to the <tt>skalibs/biguint.h</tt> header for the exact function
prototypes.
</p>
<h3> <a name="defs" />
Definitions </h3>
<ul>
<li> A <em>biguint</em> <tt>x</tt> is a pointer to an array <tt>u</tt>
of uint32_t, together with an unsigned integer <tt>n</tt> called its <em>length</em>.
<br><tt>x = (2^32)^0 * u[0] + (2^32)^1 * u[1] + ... + (2^32)^(n-1) * u[n-1]</tt>. </li>
<li> Every <tt>u[i]</tt> is called a <em>limb</em>. </li>
<li> The greatest integer <tt>i</tt> lesser than <tt>n</tt> for which
<tt>u[i]</tt> is non-zero is called the <em>order</em> of <tt>x</tt>. The
order of zero is 0. </li>
</ul>
<h3> <a name="basic" />
Basic operations </h3>
<h4> Creating a biguint </h4>
<p>
Just declare <tt>uint32_t x[n] ;</tt> - <em>n</em> being the length of the
biguint. You could also allocate <em>x</em> in the heap, possibly using a
uint32_t <a href="../libstddjb/genalloc.html">genalloc</a>. In the following,
a biguint is always referred to as a <tt>uint32_t *</tt> with its
<tt>unsigned int</tt> length ; it must always be pre-allocated.
</p>
<p>
If an operation fails because a biguint's length <tt>n</tt> is too small to
accommodate the result, the function will write the first (i.e. least significant)
<tt>n</tt> limbs of the result, truncating it, then return 0 with errno set to
EOVERFLOW.
</p>
<h4> Setting it to zero </h4>
<pre>
uint32_t *x ;
unsigned int n ;
bu_zero(x, n) ;
</pre>
<p>
<tt>bu_zero()</tt> sets the first <tt>n</tt> limbs of <tt>x</tt> to zero.
</p>
<h4> Copying a biguint </h4>
<pre>
uint32_t const *x ;
unsigned int xn ;
uint32_t *y ;
unsigned int yn ;
bu_copy(y, yn, x, xn) ;
</pre>
<p>
<tt>bu_copy()</tt> copies <tt>x</tt> to <tt>y</tt>, setting higher limbs of <tt>y</tt>
to zero if needed. It then returns 1. If <tt>y</tt> is too small to contain <tt>x</tt>,
the function returns 0 EOVERFLOW.
</p>
<h4> Calculating the order </h4>
<pre>
uint32_t const *x ;
unsigned int n ;
unsigned int r ;
r = bu_len(x, n) ;
</pre>
<p>
<tt>bu_len()</tt> outputs the order of <tt>x</tt> of length <tt>n</tt>.
<tt>0 <= r <= n</tt>.
</p>
<h4> Comparing two biguints </h4>
<pre>
uint32_t const *a ;
unsigned int an ;
uint32_t const *b ;
unsigned int bn ;
int r ;
r = bu_cmp(a, an, b, bn) ;
</pre>
<p>
<tt>bu_cmp()</tt> returns -1 if <tt>a < b</tt>, 1 if
<tt>a > b</tt>, and 0 if <tt>a = b</tt>.
</p>
<h3> <a name="io" />
I/O operations </h3>
<h4> Writing a biguint as an array of bytes </h4>
<pre>
char *s ;
uint32_t const *x ;
unsigned int n ;
bu_pack(s, x, n) ;
bu_pack_big(s, x, n) ;
</pre>
<p>
<tt>bu_pack()</tt> writes <tt>4*n</tt> bytes to <tt>s</tt>. The bytes
are a little-endian representation of <tt>x</tt>.<br />
<tt>bu_pack_big()</tt> is the same, with a big-endian representation.
</p>
<h4> Reading a biguint from an array of bytes </h4>
<pre>
char const *s ;
uint32_t *x ;
unsigned int n ;
bu_unpack(s, x, n) ;
bu_unpack_big(s, x, n) ;
</pre>
<p>
<tt>bu_unpack()</tt> reads <tt>4*n</tt> little-endian bytes from <tt>s</tt>
and writes them into the corresponding biguint <tt>x</tt>. <br />
<tt>bu_unpack_big()</tt> is the same, but the bytes are interpreted as
big-endian.
</p>
<h4> Formatting a biguint for readable output </h4>
<pre>
char *s ;
uint32_t const *x ;
unsigned int n ;
bu_fmt(s, x, n) ;
</pre>
<p>
<tt>bu_fmt()</tt> writes <tt>x</tt> in <tt>s</tt> as a standard big-endian
hexadecimal number. <tt>x</tt> is considered of length <tt>n</tt>, so
<tt>8*n</tt> bytes will be written to <tt>s</tt>, even if it <tt>x</tt>
starts with zeros. <tt>bu_fmt</tt> returns the number of bytes written.
</p>
<h4> Reading a biguint from readable format </h4>
<pre>
char const *s ;
uint32_t *x ;
unsigned int xn ;
unsigned int z ;
unsigned int len ;
len = bu_scanlen(s, &z) ;
bu_scan(s, len, x, xn, z) ;
</pre>
<p>
bu_scanlen() scans <tt>s</tt> for a biguint written as a hexadecimal
number and returns the number of
bytes read. The reading stops at the first byte encountered that is not
in the 0-9, A-F or a-f range. The <tt>z</tt> integer then contains the
number of bytes excluding leading zeros.
</p>
<p>
If x has not been allocated yet, you can use <tt>xn = bitarray_div8(z)</tt>
(if you have included the <tt>bitarray.h</tt> header)
and allocate <tt>x</tt> with length <tt>xn</tt>.
</p>
<p>
<tt>bu_scan()</tt> then reads <tt>len</tt> bytes from <tt>s</tt>, assuming
there are <tt>z</tt> significant bytes (i.e. not leading zeros); it writes
the resulting biguint into <tt>x</tt> of length <tt>xn</tt>. It returns 1,
except if <tt>xn</tt> is too small, in which case it returns 0 EOVERFLOW.
</p>
<h3> <a name="arith" />
Arithmetic operations </h3>
<h4> Addition </h4>
<pre>
uint32_t const *a ;
unsigned int an ;
uint32_t const *b ;
unsigned int bn ;
uint32_t *c ;
unsigned int cn ;
unsigned char carrybefore ;
unsigned char carryafter ;
bu_add(c, cn, a, an, b, bn) ;
bu_sub(c, cn, a, an, b, bn) ;
</pre>
<p>
<tt>bu_add()</tt> adds <tt>a</tt> and <tt>b</tt>, and puts the result
into <tt>c</tt>. It returns 1 unless it has to truncate it.
</p>
<p>
<tt>bu_sub()</tt> substracts <tt>b</tt> from <tt>a</tt>, and puts the
result into <tt>c</tt>. If the result should be negative, then it is
written as <tt>(2^32)^cn - c</tt> and the function returns 0 EOVERFLOW.
</p>
<h4> Multiplication </h4>
<pre>
uint32_t const *a ;
unsigned int an ;
uint32_t const *b ;
unsigned int bn ;
uint32_t *c ;
unsigned int cn ;
bu_mul(c, cn, a, an, b, bn) ;
</pre>
<p>
<tt>bu_mul()</tt> computes <tt>c=a*b</tt>.
Make sure that <tt>cn</tt> ≥ <tt>bu_len(a, an) + bu_len(b, bn)</tt>.
If it is not the case, the result will be truncated and bu_mul will return
0 EOVERFLOW.
</p>
<h4> Division </h4>
<pre>
uint32_t const *a ;
unsigned int an ;
uint32_t const *b ;
unsigned int bn ;
uint32_t *q ;
unsigned int qn ;
uint32_t *r ;
unsigned int rn ;
bu_div(a, an, b, bn, q, qn, r, rn) ;
bu_mod(r, rn, b, bn) ;
</pre>
<p>
<tt>bu_div()</tt> computes <tt>q</tt>, the quotient, and <tt>r</tt>, the
remainder, of <tt>a</tt> divided by <tt>b</tt>. If <tt>b</tt> is zero, it
returns 0 EDOM. If <tt>qn</tt> or <tt>rn</tt> is to small to store the
quotient or the remainder, it returns 0 EOVERFLOW.
<tt>bu_mod()</tt> computes only the remainder, and stores it in-place.
</p>
<h4> GCD </h4>
<pre>
uint32_t *r ;
unsigned int rn ;
uint32_t const *a ;
unsigned int an ;
uint32_t const *b ;
unsigned int bn ;
bu_gcd(r, rn, a, an, b, bn) ;
</pre>
<p>
</p>
<tt>bu_gcd()</tt> computes the greatest common divisor between <tt>a</tt>
and <tt>b</tt>, and stores it into <tt>r</tt>. It returns 1 if all went well.
</p>
<p>
Note that this function iterates on divisions, so it might use a non totally
negligible amount of CPU time.
</p>
<h4> Left-shifts and right-shifts </h4>
<pre>
uint32_t *x ;
unsigned int xn ;
unsigned char carryafter ;
unsigned char carrybefore ;
carryafter = bu_slbc(x, xn, carrybefore) ;
carryafter = bu_srbc(x, xn, carrybefore) ;
</pre>
<p>
<tt>bu_slbc()</tt> computes <tt>x <<= 1</tt>.
The least significant bit of <tt>x</tt> is then set to
<tt>carrybefore</tt>. <tt>bu_slbc()</tt> returns the
previous value of <tt>x</tt>'s most significant bit. <br />
<tt>bu_srbc()</tt> computes <tt>x >>= 1</tt>.
The most significant bit of <tt>x</tt> is then set to
<tt>carrybefore</tt>. <tt>bu_slbc()</tt> returns the
previous value of <tt>x</tt>'s least significant bit.<br />
<tt>bu_slb(x, n)</tt> and <tt>bu_srb(x, n)</tt> are macros for
respectively <tt>bu_slbc(x, n, 0)</tt> and <tt>bu_srbc(x, n, 0)</tt>.
</p>
<h4> Modular operations </h4>
<pre>
uint32_t const *a ;
unsigned int an ;
uint32_t const *b ;
unsigned int bn ;
uint32_t *c ;
unsigned int cn ;
uint32_t const *m ;
unsigned int mn ;
bu_addmod(c, cn, a, an, b, bn, m, mn) ;
bu_submod(c, cn, a, an, b, bn, m, mn) ;
bu_mulmod(c, cn, a, an, b, bn, m, mn) ;
bu_divmod(c, cn, a, an, b, bn, m, mn) ;
bu_invmod(c, cn, m, mn) ;
</pre>
<p>
<tt>bu_addmod()</tt> computes <tt>c = (a+b) mod m</tt>.<br />
<tt>bu_submod()</tt> computes <tt>c = (a-b) mod m</tt>.<br />
<tt>bu_mulmod()</tt> computes <tt>c = (a*b) mod m</tt>.<br />
<tt>a</tt> and <tt>b</tt> must already be numbers modulo <tt>m</tt>.<br />
The functions return 1 if all went well.
</p>
<p>
<tt>bu_divmod()</tt> computes <tt>a</tt> divided by <tt>b</tt> modulo
<tt>m</tt> and stores it into <tt>c</tt>. <br />
<tt>bu_invmod()</tt> computes the inverse of <tt>c</tt> modulo <tt>m</tt>
and stores it into <tt>c</tt>. <br />
The divisor and <tt>m</tt> must be relatively prime, else
those functions return 0 EDOM. <br />
The algorithm for modular division and inversion is due to
<a href="http://research.sun.com/techrep/2001/abstract-95.html">Sheueling
Chang Shantz</a>.
</p>
</body>
</html>
|